Genetic and functional characterization of carrot terpene synthases

S. Reichardt, H. Budahn, D. Riewe, D. Ulrich, F. Dunemann, L. Kopertekh

Corresponding author: sven.reichardt@julius-kuehn.de

Federal Research Centre for Cultivated Plants

Cyclic monoterpene-reduced carrot mutant cola

Terpenes are a huge class of organic compounds with diverse physiological functions also having applications in industry and medicine. **Terpene synthases (TPSs)** are key enzymes in the formation of low molecular weight terpenes. We identified a carrot mutant that has a dwarfish habit,

QTL-based identification of candidate genes

To investigate a relationship between chemical phenotype and genotype we performed a QTL analysis using a F_2 -mapping population of 320 plants developed by crossing the *cola* mutant and a reference genotypes. QTLs with highly significant LOD-scores were detected for four monoterpenes in leaf material.

called *cola* (*compressed lamina*). Metabolite profiling of this mutant revealed a 87,8% decrease in the content of cyclic monoterpenes compared to the reference genotype.

Expression of at least one TPS gene with a role in the production of thujenes and terpinenes was blocked in the *cola* mutant.

A gene cluster on chromosome 4 consisting of the previously annotated DcTPS04, DcTPS26, DcTPS27, DcTPS54 and DcTPS55 genes shows a highly significant correlation to biosynthesis of terpinene and thujene and their derivatives but not of β -myrcene and other acyclic monoterpenes.

High sequence similarity of the candidates

Phylogenetic analysis based on the AA sequence of the carrot TPSs revealed that the five candidate genes belong to subfamily TPS-b.

TPS-b3

DcTPS54-His

DcTPS04-His

Expression of candidate TPSs in cola

Expression of candidate TPSs was examined by semi quantitative RT-PCR in leaf material. Each sample was pooled from three independent plants.

An equal expression in the *cola* mutant and reference carrot was detected for *DcTPS04* and *DcTPS26*. A slight reduction of *DcTPS27* and *DcTPS55* gene expression was observed in the *cola*

Interestingly there was no expression of *DcTPS54* in the *cola* mutant. We suppose that *DcTPS54* might be responsible for biosynthesis of thujenes and terpinenes.

mutant.

Sequence alignment showed a very high sequence similarity (~ 86 %) of the catalytic domain in the investigated candidates.

Purification of recombinant TPSs

Based on the combined analysis of the obtained data we focused on cloning *DcTPS04* and *DcTPS54*. To isolate and further analyze the enzymatic activity we added C-terminal His-Tag, produced the recombinant enzymes in bacterial and plant expression systems and purified them by affinity chromatography

Conclusion and future prospects

We identified a cluster on chromosome 4 associated with biosynthesis of thujenes and terpinenes in carrot leaves.

This cluster includes *DcTPS04*, *DcTPS26*, *DcTPS27*, *DcTPS54* and *DcTPS55* genes, all showing a very high sequence similarity.

A combination of metabolite profiling and expression analysis gives first indication on the enzymatic activity of the TPS candidates.

Future prospects:

An *in vitro* assay might finally verify the involvement of *Dc*TPS04 and/or *Dc*TPS54 in the biosynthesis of thujenes and terpinenes.

Expression of *Dc*TPS04 was observed in *N. benthamina* but it could not be detected in *E. coli*. *Dc*TPS54 showed a good expression level in both systems.

Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated plants

www.julius-kuehn.de